
Stack-based BOF exploitation
& Protection schemes (& how to break them)

Andrew Wesie & Brian Pak

Carnegie Mellon University

Plaid Parliament of Pwning

Who are we?

¤  Students at Carnegie Mellon University

¤  Hackers
¤  Members of Plaid Parliament of Pwning

¤  Codegate Participants

¤  Codegate Winners

Agenda

¤  Buffer Overflow

¤  Exploitation techniques for stack-based buffer overflow

¤  Mitigation techniques to prevent the exploitation

¤  Bypassing the protections

¤  Summary

¤  Q&A

Buffer Overflow
& Exploitation

What is ‘Buffer Overflow’?

¤  Buffer overflow occurs
when there is more data
copied into the buffer than
the size of the memory that
is allocated for that buffer

Int main(int argc, char *argv[])

{

 char buf[64];

 strcpy(buf, argv[1]);

}

What is ‘Buffer Overflow’?

¤  char buf[4]; ¤  strcpy(buf, “plaid”);

p l a i d \0

buf is only 4 bytes, but we copied total of 6 bytes of data
(including NULL byte at the end)

Buffer Overflow

¤  There are two types of buffer overflow:
¤  Stack buffer overflow

¤  Heap buffer overflow

¤  It depends on where the overflow is happening
¤  The cause is the same, but the way to attack is very

different

¤  In this talk, we will only focus on Stack-based bof

What can happen?

¤  Segmentation Fault!
¤  Programmer’s No. 1 enemy, Hacker’s No. 1 friend :)

¤  Due to the compiler allocating little more space than
needed (for aligning), overflowing a couple of bytes
wouldn’t cause a serious problem

¤  However, two things are clear with arbitrary # of bytes:
¤  We can corrupt the local variable values

¤  We can corrupt the saved ebp and saved eip on the stack

Assembly

¤  In C:

int func(int arg1, int arg2)
{
 char buf[4];
 …
 return 1;
}

¤  Disassembled:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1 ; return value 1
 mov esp, ebp
 pop esp
 ret

function
prologue

function
epilogue

Stack Layout

…

arg2

arg1

ret (saved eip)

saved ebp

Local variables

…

arg2

arg1

…

Stack Frame
for a caller function

Stack Frame
for a callee function

Stack grows
DOWN

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret esp à

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret

saved ebp esp à

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret

saved ebp esp, ebp à

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret

saved ebp ebp à

esp à

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret

saved ebp

buf

ebp à

esp à

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret

saved ebp

buf

ebp à

esp à

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret

saved ebp ebp, esp à

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

ret esp à

ebp restored to ‘saved ebp’

Stack Diagram

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

eip restored to ‘ret’

esp à

What if…

¤  In C:

int func(int arg1, int arg2)
{
 char buf[4];
 …
 strcpy(buf, …);
 return 1;
}

When copying 3 bytes…

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 call strcpy
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

saved ret

saved ebp

\0 | c | b | a

ebp à

esp à

When copying 16 bytes…

¤  Code:

<func>:
 push ebp
 mov ebp, esp
 sub esp, 0x8
 …
 call strcpy
 …
 mov eax, 0x1
 mov esp, ebp
 pop ebp
 ret

arg2

arg1

saved ret

saved ebp

…

d | c | b | a

ebp à

esp à

How it can be used to exploit

¤  Overflow the buffer
such that we can
modify the ‘saved ret’
to arbitrary target
address

arg2

arg1

TARGET ADDRESS

X | X | X | X

…

d | c | b | a

ebp à

esp à

How it can be used to exploit

¤  Overflow the buffer
such that we can
modify the ‘saved ret’
to arbitrary target
address

¤  When we reach the
function prologue to
return, we return to the
target address that we
set previously

arg2

arg1

TARGET ADDRESS esp à

mov esp, ebp
pop ebp
ret

eip := [esp]
esp += 4

What does this mean to us?

¤  We can put arbitrary address to ‘saved ret’ and when
the function returns, it will return to whatever we put

¤  If we put an address of an attacking code (e.g.
shellcode), then that code will be executed

¤  In other words, we can control the flow of the program!

Demo I: Stack-based BOF

¤  Simple C Program

¤  Overwriting return address
¤  Calling the function that is not called anywhere in the code

¤  Executing Shellcode that’s on the stack

Basic Idea

overwritten ret

saved ebp

local variables

buf

…

Protection Schemes
& How to bypass them

The Problem

¤  Remote code execution exploits need to be stopped

¤  It is hard to fix all bugs in all programs

¤  And it would be nice to make programs secure without
re-compiling them

The Solutions

¤  Non-Executable Memory
¤  NX-bit

¤  Randomization
¤  ASLR

¤  Stack Canary

NX-bit

¤  Originally, buffer overflows would execute code that the
attacker provided

¤  So, can we never execute the attacker’s code?

¤  Most of the operating systems support NX-bit, and is on
by default.

¤  Basic idea:
¤  Code is general read-only

Basic Idea

overwritten ret

saved ebp

local variables

buf

…

NX-bit

¤  While it makes a buffer overflow exploit more
complicated, it is not a perfect solution

¤  NX-bit does not stop the attacker from executing code
that already exist in memory

¤  Typical techniques to bypass NX-bit protection
¤  Return-To-Libc (RTL)

¤  Return Oriented Programming (ROP)

Return-To-Libc

¤  The C libraries are almost always loaded into memory
and contains lots of useful code

¤  ‘mprotect()’ can change the permissions of the memory
¤  Making the attacker’s code executable

¤  ‘execv()’ will load a program and execute its code

Demo II: Same but with NX-bit

¤  Basic buffer overflow we just saw earlier

¤  We will show the way how we can’t exploit it with the
same method

¤  We will demonstrate Return-to-Libc (system) to show how
libc is useful :p

Return-Oriented-Programming

¤  Another method to bypass NX-bit protection

¤  A bit more complicated than Return-to-Libc attack
¤  We will not go into the details here
¤  For more details, read

¤  http://cseweb.ucsd.edu/~hovav/talks/blackhat08.html
¤  http://trailofbits.files.wordpress.com/2010/04/practical-

rop.pdf

¤  Find ‘gadgets’ in the code that is in memory

¤  Chain these gadgets using returns or jumps

¤  If you find the right set of gadgets, you will have a turing
complete language

Stack Canaries (Stack cookie)

¤  Put a random number
between stack
variables and the
return address

¤  Before executing a
‘ret’, verify the
integrity of the
random number
¤  If the number

changed, then abort

¤  Goal: detect bof, and
stop them from being
exploited

…

arg2

arg1

ret (saved eip)

saved ebp

STACK CANARY

Local variables

Stack Canaries

¤  Works very well on GNU/Linux

¤  On Windows, they can usually be bypassed with
Structured Exception Handler (SEH) techniques

¤  Biggest flaw: they only protect stack

¤  It cannot stop things like:
¤  Heap overflow / corruption

¤  Double free

¤  Format String Vulnerabilities

Structured Exception Handler

Pointer to next SEH record

Pointer to Exception Handler

Pointer to next SEH record

Pointer to Exception Handler

0xFFFFFFFF

Pointer to Exception Handler

¤  Mechanism to handle both
hardware and software
exceptions

¤  Supports __try, __except, and
__finally keywords

¤  SEH frames saved on the stack

¤  In x86, FS register points to the
current value of the Thread
Information Block (TIB) structure
¤  One element in TIB structure

contains a pointer to an
EXCEPTION_REGISTRATION
structure.

¤  EXCEPTION_REGISTRATION
structure points to the
exception handler function

+ Stack View
Top

Bottom

…

…

Windows Default Handler

Structured Exception Handler

struct EXCEPTION_REGISTRATION

{

 EXCEPTION_REGISTRATION *prev;

 DWORD handler;

};

¤  Linked list

¤  prev points to the next
EXCEPTION_REGISTRATION
block

¤  handler contains a pointer
to an exception handler
function

EXCEPTION_REGISTRATION
structure
(EXSUP.INC in VC++ runtime library)

Basic Concept

¤ We can overflow the buffer to overwrite data on
the stack

¤ Then, we can overwrite SE Handler
¤  Once the exception is handled, EIP will be changed to

the address of the SE Handler

¤  Thus, we can control the execution flow

Wait…

¤  How is it useful if we have a stack canary, which will be
verified later?

¤  SEH is awesome because:
¤  If we can cause an exception before stack canary check

occurs, it’s game over

¤  And, we can:

¤  Write beyond the end of the stack

¤  Thus, no need to worry about stack canary being correct

SEH Exploit Design

¤  Overwrite the pointer to
the next SEH record with
jump instruction.

¤  Overwrite the SE Handler
with a pointer to a
sequence of instructions for
fake exception handling.

¤  Cause an exception.

¤  Shellcode resides directly
after the SE Handler.

*Redrawn from corelanc0der’s tutorial

SEH Exploit Payload

¤  Usually, the SEH Exploit payload will be in the form of:
¤  <Garbage> <next SEH> <SEH pointer> <Shellcode>

¤  We put “jmp instruction” at <next SEH> to branch to
<Shellcode>

¤  We put the address of “pop, pop, ret” gadget at
<SEH pointer>

¤  This can be found from ntdll.dll or application specific dll’s

¤  Check if there is any dll that is compiled without /SafeSEH

Demo III: Bypassing Stack Canary

¤  Windows

¤  Basic buffer overflow with /GS flag
¤  We will show how it breaks the simple exploitation

¤  We will show how SEH can be used to bypass this

Address Space Layout
Randomization (ASLR)

¤  Trivial buffer overflow exploits rely on the location of the
stack

¤  Return-to-Libc attacks (obviously) rely on the location of
the libc in memory

¤  It is enabled in most of Linux and Windows distributions by
default

Stack ASLR

¤  In a stack buffer overflow, this is easy to bypass
¤  You can still overwrite the return address

¤  Address of the attacker’s buffer is usually on the stack

¤  Otherwise, use Return-to-Libc or Return-Oriented-
Programming

¤  In other scenarios, you will have to overwrite a function
pointer instead of the return address
¤  Entry in the GOT (Global Offset Table)

¤  A virtual function table in C++

Library ASLR

¤  This was the answer to fix Return-to-Libc and Return-
Oriented-Programming attacks
¤  You cannot return to code if you don’t know where it is!

¤  In general, this does make life harder for the attacker
¤  Not much in Windows though, since some libraries are not

randomized

¤  Unfortunately, randomization might not be suffice

Other ASLR

¤  Heap is usually randomized if libraries are
¤  This makes heap attacks more difficult

¤  Usual work-around: heap spraying

¤  Program code can also be randomization
¤  Rare in the real-world

¤  Performance degrades, and have to enable at compile
time

¤  Position-independent code

Randomization Limitations

¤  Randomization is only effective if it stops the attacker
from knowing the location of things

¤  Example: Randomization is useless if the attacker can
combine buffer overflow with an information disclosure
¤  If attacker can arbitrarily peek at memory before the

overflow, he can figure out where things are è making
reliable exploits

Randomization Limitations

¤  Limited address space on x86
¤  x86 has 32-bit address space

¤  Due to performance constraints, memory sections must
be page-aligned
¤  This reduces 32-bits of potential randomization to only 20-bits

¤  Libraries are located in a specific area of memory
¤  Dependent on OS, distribution, etc.

¤  Example: Debian=0xB7xxxxxx

¤  This reduces library randomization by another 8 bits or so

Demo IV: Randomization Limits

¤  /proc /*/maps

¤  for i in `seq 1 4000`; do cat /proc/self/maps; done | grep
“glibc line” | cut -f 1 -d ‘-’ | sort | uniq | wc -l
¤  Returns 512 on Debian Squeeze 32-bit

Randomization Limitation

¤  If an attacker can attempt his exploit an arbitrary
amount of times, then:
¤  randomization becomes useless

¤  Main effect:
¤  Exploits become less reliable

¤  Attacks are now probabilistic

Demo V: Pwning NX and ASLR

¤  Show example with both NX and ASLR on

¤  Exploit the program using brute-force way
(probabilistic method)

Other techniques

¤  These are the other techniques and topics that are
related to this talk, but we haven’t covered them for the
time being. Google them, and learn more about them!
¤  Stack Pivot

¤  Return Oriented Programming

¤  Heap spray

¤  Etc.

Conclusion
& some thoughts

Summary

¤  Buffer overflow

¤  Protection schemes against well-known attacks
¤  NX-bit: You can’t run code in stack

¤  Stack Cookie: You can’t overwrite the return address

¤  ASLR: You don’t know the location of stack, heap, library

¤  Bypassing the protections
¤  NX-bit: RTL (mprotect, execv), ROP, FSB, etc.

¤  Stack Cookie: SEH overflow (Windows)

¤  ASLR: Brute-forcing, Information Disclosure, etc.

Q&A
You will regret if you don’t ask it now!
(you can ask for my number too, if you want ;)

